翻訳と辞書 |
Direct image with compact support : ウィキペディア英語版 | Direct image with compact support In mathematics, in the theory of sheaves the direct image with compact (or proper) support is an image functor for sheaves. ==Definition==
Let ''f'': ''X'' → ''Y'' be a continuous mapping of topological spaces, and ''Sh''(–) the category of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support :''f''!: ''Sh''(''X'') → ''Sh''(''Y'') sends a sheaf ''F'' on ''X'' to ''f''!(''F'') defined by :''f''!(''F'')(''U'') := , where ''U'' is an open subset of ''Y''. The functoriality of this construction follows from the very basic properties of the support and the definition of sheaves.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Direct image with compact support」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|